
The Journal of Systems and Software 151 (2019) 133–149

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Data prefetching and file synchronizing for performance optimization

in Hadoop-based hybrid cloud

Chunlin Li a , c , d , ∗, Jing Zhang

a , b , Yi Chen

c , Youlong Luo

a

a School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430063, China
b International College, Huanghuai University, Zhumadian 4630 0 0, China
c Beijing Key Laboratory of Big Data Technology for Food Safety, Beijing Technology and Business University, Beijing, China
d Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121,

China

a r t i c l e i n f o

Article history:

Received 7 April 2018

Revised 10 October 2018

Accepted 4 February 2019

Available online 8 February 2019

Keywords:

Data prefetching

File synchronizing

Hybrid cloud

a b s t r a c t

Driven by the technical factors such as system reliability, bandwidth constraints, data confidentiality and

security, as well as the economic factors such as initial capital expenditure and re-occurring operating

expenditure, today’s cloud computing tends to adopt hybrid cloud model. However, because hybrid clouds

scale both numerically and geographically, the network delay becomes the main constraint in remote

file system access. To hide network latency and reduce job completion time in Hadoop-based hybrid

cloud data access, a scheduling-aware data prefetching scheme to enhance non-local map task’s data

locality in Hadoop-based centralized hybrid cloud (CHCDLOS-Prefetch) and a file synchronizing method to

decrease job execution delay in Hadoop-based distributed hybrid cloud (DHCDLO-Sync) are proposed. In

the former, input data for non-local map tasks are fetched ahead of time to target compute nodes by

making use of idle network bandwidth. In the latter, considered from job level scheduling, data files with

high popularity are proactively synchronized beforehand among sub-clouds to strength intra sub-cloud

data locality in distributed hybrid cloud. Extensive experimental results illustrate that compared to the

Capacity , the Fair and the DARE algorithms, our proposed algorithms improve hybrid cloud performance

more significantly in data locality and job completion time.

© 2019 Elsevier Inc. All rights reserved.

1

c

n

c

i

c

m

b

b

o

r

o

p

s

C

t

J

h

t

d

c

o

s

a

c

t

f

i

c

c

t

h

0

. Introduction

The data explosion in recent years has led to a widely use of

loud computing in data-intensive applications. Driven by the tech-

ical factors such as system reliability, bandwidth constraints, data

onfidentiality and security, as well as the economic factors such as

nitial capital expenditure and re-occurring operating expenditure,

loud computing in many cases tends to adopt the hybrid cloud

odel (Van den Bossche et al., 2013). Hybrid clouds, which com-

ine both public cloud offerings and private infrastructures, have

een broadly accepted and used in both industry and research.

However, because hybrid clouds scale both numerically and ge-

graphically, the network delay becomes the main constraint in

emote file system access (Liao et al., 2017). Tasks scheduled to

ff-premise resources have to spend long time on waiting for in-

ut data retrieving. To solve this problem, many prefetching and

ynchronizing schemes are introduced to hide the latency in dis-
∗ Corresponding author at: Department of Computer, Wuchang, Wuhan 430063,

hina.

E-mail address: chunlin74@aliyun.com’ (C. Li).

h

B

h

fl

ttps://doi.org/10.1016/j.jss.2019.02.007

164-1212/© 2019 Elsevier Inc. All rights reserved.
ributed systems caused by network communication (Mansouri and

avidi, 2018 ; Chunlin Li, Jing Zhang, 2019 ; Chunlin Li, Tang Jian-

ang, 2019). Data prefetching tries to predict future access and

ransfers input data to target nodes in advance, which can re-

uce execution waiting delay and job completion time. File syn-

hronizing is to transfer the absent files to different web sites

f the hybrid cloud, which can increase file replicas and improve

ub-clouds’ data locality, making files be locally available, thereby

voiding remote data retrieval and improving job execution effi-

iency.

In this paper, we study data prefetching and file synchronizing

echniques in Hadoop-based hybrid cloud. Based on Hadoop plat-

orm, we built two kinds of hybrid clouds with different schedul-

ng modes: the centralized hybrid cloud and the distributed hybrid

loud. In centralized hybrid cloud, Hadoop is deployed in private

loud data center, off-premise resources are moved in and out of

he hybrid cloud elastically on demand (Wang et al., 2013), and all

ybrid cloud resources are managed by a master scheduling server.

ecause of its good scalability and higher flexibility, this mode of

ybrid cloud is widely used in the scenarios with large workload

uctuation and cloud bursting, such as e-business, e-commerce,

https://doi.org/10.1016/j.jss.2019.02.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.02.007&domain=pdf
mailto:chunlin74@aliyun.com
https://doi.org/10.1016/j.jss.2019.02.007

134 C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149

Fig. 1. Application scenarios of centralized hybrid cloud environment.

r

a

s

i

p

f

e-science, on-line gaming, CDN content dissemination and social

networking (Kovachev et al., 2014), which is shown as Fig. 1 . In dis-

tributed hybrid cloud, Hadoop is deployed in each sub-cloud data

center of the hybrid cloud, resources of each sub-cloud are man-

aged by an independent master scheduling server, the interaction

among sub-clouds is realized through master scheduling servers,

and jobs submitted to the hybrid cloud are processed cooperatively

by all sub-clouds. Due to its better stability and strong disaster re-

sistance, this mode of hybrid cloud is universally applied in the

scenarios of sensor networks, fog computing, web hosting, meteo-

rological data analysis and iterative MapReduce (Clemente-Castelló

et al., 2017), which is shown as Fig. 2 .

However, no matter the centralized hybrid cloud or the dis-

tributed hybrid cloud, they will suffer from network delay in

Fig. 2. Application scenarios of distrib
emote file system access. To hide communication latency, utilize

vailable idle bandwidth and reduce job execution waiting time, a

cheduling-aware data prefetching method and a file synchroniz-

ng approach for data locality in Hadoop-based hybrid cloud are

roposed. The main contributions of this work are summarized as

ollows.

(1) To effectively utilize idle network bandwidth and reduce

job execution waiting time, we proposed a scheduling-aware

data prefetching method for data locality in Hadoop-based

centralized hybrid cloud. In each round scheduling, candi-

date compute nodes are preselected first. Then, non-node lo-

cality map tasks relative to these compute nodes are deter-

mined. Finally, according to predefined rules, the input data
uted hybrid cloud environment.

C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149 135

l

a

a

S

p

c

2

2

c

g

t

M

l

s

i

s

e

b

i

Y

w

c

a

d

a

o

t

t

t

m

T

a

s

t

m

2

M

w

n

d

c

(

f

g

(

u

d

w

t

t

s

t

f

a

l

T

i

c

t

f

b

i

s

2

(

b

t

I

g

m

p

w

p

d

c

a

t

g

m

e

c

c

e

d

p

I

t

m

3

3

h

t

o

m

a

h

a
of qualified non-node locality map tasks are prefetched to

target compute nodes ahead of task execution.

(2) To hide network delay caused by cross-cloud data transmis-

sion and improve job execution efficiency, a file synchro-

nizing method for data locality in Hadoop-based distributed

hybrid cloud is presented. In this method, to avoid unnec-

essary data transmission for reducing network overhead,

only the high popular files are selected as the sync files

and synchronized periodically to other sub-clouds of the

distributed hybrid cloud.

(3) Through evaluation, the performance of the scheduling-

aware data prefetching method and the file synchronizing

algorithm in Hadoop-based hybrid cloud are verified. Exper-

imental results demonstrate that compared to the Capacity,

Fair and DARE algorithms, our proposed data prefetching and

file synchronizing algorithms improve hybrid cloud perfor-

mance significantly better in data locality and job comple-

tion time.

The remaining of the paper is organized as follows. Some re-

ated works are briefly reviewed in Section 2 . The model and

lgorithm implementation of scheduling-aware data prefetching

nd file synchronizing in hybrid cloud are described in Section 3 .

ection 4 introduces an application scenario. Section 5 proceeds

erformance evaluation of our proposed methods. Finally, we con-

lude the paper in Section 6 .

. Related work

.1. Data locality optimization methods in cloud

There has been substantial researches on data locality of cloud

omputing. In Chen et al. (2016) , by considering data locality and

lobal data access cost, Chen et al. proposed a topology-aware op-

imal data placement algorithm to improve the performance of

apReduce in cloud data center. In Chen et al. (2017) , a data al-

ocation algorithm with minimum cost for dynamic datacenter re-

izing was proposed. What related to our work is the prefetching

dea. In Seo et al. (2009) , Seo et al. presented two optimization

chemes, prefetching and pre-shuffling, in the shared MapReduce

nvironment. The former aims to improve the data locality during

oth map and reduce phases, while the latter focuses on reduc-

ng the shuffling overhead during the reduce phase. In Wang and

ing (2016) , Wang et al. solved the data locality issues from a net-

ork perspective, and proposed a Joint Scheduler to utilize the

omputing resources and the communication network. There are

lso methods addressing the data locality problem from the side of

istributed file system. Ananthanarayanan et al. (2011) presented

n algorithm named Scarlett which replicates data blocks based

n their popularity to address the problem of hotspot access bot-

lenecks. Abad et al. presented DARE (Abad et al., 2011), a dis-

ributed adaptive data replication algorithm, to aid the scheduler

o achieve better data locality. DARE addresses the issues of how

any replicas a file should be allocated and where to place them.

hese two algorithms replicate data chunks according to the vari-

nce in data popularity and access patterns, which share the same

pirit as we do in distributed hybrid cloud data locality optimiza-

ion that makes the popular data accessible to more sub-cloud

achines.

.2. Scheduling algorithms for data locality

Data locality has been widely studied in task scheduling in

apReduce. Delay (Zaharia et al., 2010), a scheduling algorithm

as proposed to address the conflict between locality and fair-

ess. This algorithm enhances data locality in map step by
elaying the job scheduling for a small amount of time if a task

annot be scheduled to a compute node with local data. Quincy

 Isard et al., 2009) introduced a resource allocation framework

or scheduling concurrent distributed jobs on clusters which can

et better fairness while substantially improving data locality. BAR

 Jin et al., 2011) is an efficient data locality driven task sched-

ler for cloud computing. By heuristic task scheduling, BAR adjusts

ata locality dynamically according to network state and cluster

orkload. SLAW (Guo et al., 2010), a scalable locality-aware adap-

ive work stealing scheduler, aims to address the issues of fixed

ask scheduling policy and locality-obliviousness in work stealing

chedulers. In Wang et al. (2016) , Wang et al. proposed a map

ask scheduling in MapReduce with data locality. This algorithm

ocus on making the tradeoff between data locality and load bal-

ncing to simultaneously maximize throughput and minimize de-

ay from a stochastic network perspective. In Tang et al. (2016) ,

ang et al. proposed a fairness concurrent distributed job schedul-

ng framework in shared computing systems with high data lo-

ality. In Palanisamy et al. (2011) , a MapReduce resource alloca-

ion system Purlieus was presented to minimize the data trans-

er overhead among tasks in a data locality-aware manner during

oth the map and reduce phases. However, if input data is large,

t may consume significant waiting time before a task could be

cheduled.

.3. Hybrid cloud construction methods

For centralized hybrid cloud construction, literature

 Marshall et al., 2010) affords us a prototype to establish hy-

rid cloud computing infrastructure which enables an organization

o elastically extend its site resources from another cloud provider.

n Javadi et al. (2012) , a failure-aware resource provisioning al-

orithm is proposed, which is implemented under a centralized

ode hybrid cloud. In Zhang et al. (2014) , a hybrid cloud com-

uting model is proposed to intelligently manage the proactive

orkload. In which, they construct their hybrid cloud by using

ublic cloud services along with their privately-owned (legacy)

ata centers in a centralized manner. As for distributed hybrid

loud establishment, reference (Di Costanzo et al., 2009) provides

n abstract view of the architecture and the implementation of

he hybrid cloud. In which, they harnesses the cloud technolo-

ies to construct distributed execution environments that span

ultiple computing sites. In Malawski et al. (2013) , Malawski

t al. addressed the cost minimization problem for data- and

ompute-intensive tasks on hybrid cloud under the deadline

onstraint. They modeled their problems under multiple het-

rogeneous compute and storage clouds which organized in a

istributed manner. In Lu et al. (2015) , Lu et al. designed a service

rovisioning model to manage the resources in the hybrid cloud.

n which, they organized their hybrid cloud that consists of mul-

iple geographically distributed cloud data centers in a distributed

anner.

. System model

.1. Scheduling-aware data prefetching for data locality in centralized

ybrid cloud

Trace analysis in some production MapReduce clusters show

hat most jobs are map-intensive, and many of them are map-

nly (Kavulya et al., 2010). Therefore this work focuses on perfor-

ance optimization for map tasks. In this section, the scheduling-

ware data prefetching method for data locality in centralized

ybrid cloud (CHCDLOS-Prefetch) is proposed. This method is re-

lized through the following steps: map task remaining execution

136 C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149

i{

H

n

a

d

f

p

c

d

b

n

t

T

d

b

g

t

s

o

m

l

c

s

n

b

t

t

t

n

i

l

3

d

s

t

r

t

s

d

t

m

m

h

d

o

(

time estimation, candidate compute nodes preselection, non-node

locality map task preselection and input data prefetching.

3.1.1. Remaining execution time estimation

Usually, the input data of the running map tasks have been ac-

quired, there is no need to retrieve them from remote. Thus, the

nodes which the map tasks are running on have available band-

width. To improve map task process concurrency and take full ad-

vantage of bandwidth resources, the available idle bandwidth can

be exploited to prefetch input data for other map tasks. In order to

ensure the input data transfer can be accomplished before a node

releasing its compute resources, the remaining execution time of

map tasks running on the node should be estimated before input

data prefetching.

The map task execution progress is the ratio of the amount of

data that the task has been processed to the total amount of data

that the map task has to process. Assume the execution progress of

map task j in node i is prg ij , the size of the data processed by map

task j is D

read
i j

, the total size of the data that the map task needs to

process is D

total
i j

, then we have pr g i j = D

read
i j

/ D

total
i j

. Suppose current

system time is T curr
i j

, the time of task j scheduled to node i is T schd
i j

,

then, map task j ’s execution rate is rat e i j = pr g i j / (T
curr

i j
− T schd

i j
) . If

T
le f t

i j
denotes the remaining execution time of map task j in node i ,

then,

T le f t
i j

= pr g i j /
(
1 − rat e i j

)
= (D

total
i j − D

read
i j)(T curr

i j − D

schd
i j) / D

read
i j

(1)

As multi-task are ran on each node, we let the minimum one

of the remaining execution time of map tasks in node i be deter-

mined as the remaining execution time of node i .

3.1.2. Compute nodes preselection

To realize data prefetching, the nodes which have available

idle bandwidth should be selected out. In addition, the case that

whether data prefetching can be accomplished before nodes re-

leasing their resources should be considered if prefetching per-

forms on these nodes. If not, bandwidth competition may occur

due to tasks delivery to these nodes, this may aggravate network

burden. Therefore, the nodes’ remaining execution time should be

compared with the data block transfer time to determine whether

they are selected as the candidate compute nodes.

Due to the variety of the hybrid cloud, the data source node

and the target compute node of map tasks may work in different

clouds (public or private). Meanwhile, the reduce tasks may occupy

part of the network bandwidth, thus, the data prefetching can only

use the idle bandwidth.

According to cloud type (public or private), network bandwidth

BW i between compute node i and its data source nodes have the

value of following cases: 1 © Data source node and target com-

pute node are both in private cloud, then, BW i is considered as

the communication bandwidth of inside the private cloud, which

is expressed as width 1 . 2 © Data source node is in the private cloud

and target compute node is in the public cloud, or vice versa, then,

BW i is deemed as the communication bandwidth between the pri-

vate cloud and the public cloud, we express it as width 2 . 3 © Data

source node and target compute node are both in the same public

cloud, then BW i is regarded as the communication bandwidth in-

side the public cloud, which is expressed as width 3 . 4 © Data source

node and target compute node belong to different public clouds,

then BW i is considered as the communication bandwidth between

the two public clouds, which is expressed as width 4 . According to

above description, the bandwidth between the compute node i and
ts source data nodes can be formulated as,

B W i = widt h x , x ∈ [1 , 4] , i ∈ [0 , m)
widt h x ≥ 0

. (2)

ere, m is the number of the compute nodes, x is the cases of

etwork bandwidth.

According to formula (2) , 1 © if B W i = 0 , it denotes there is no

vailable bandwidth between node i and its data source node for

ata prefetching; 2 © if BW i > 0, it indicates there is idle bandwidth

or data prefetching. Next, data block transfer time should be com-

uted.

Assume the data block size in hybrid cloud is S block , the time-

onsuming of transmitting a data block to node i from its source

ata node is T
perblock

i
, then, under the condition of BW i > 0, the data

lock transfer time from data source node to the target compute

ode can be computed as formula (3) . Here, m is the number of

he compute nodes.

perblock
i

= S block / B W i , i ∈ [0 , m) (3)

As each data block has multi replicas in the system, thus, the

ata source nodes of a map task are not unique. Therefore, the data

lock transfer time from all of the source data nodes to the tar-

et compute node should be computed. In addition, all data block

ransfer time and their corresponding source data node address are

aved in a set T block
i

for next step data prefetching.

Finally, let the minimum remaining execution time min (T le f t
i j

)

f node i compare with its maximum data block transfer time

ax (T perblock
i

) , if max (T perblock
i

) < min (T le f t
i j

) , node i will be se-

ected as the candidate compute node and saved in the candidate

ompute node set candidateNodes .

Algorithm 1 depicts the pseudo-code for compute node pre-

election. The main steps are as follows: 1 © Bandwidth of each

ode is calculated in Algorithm 1 lines 2 ∼3, and the minimum

andwidth between source node and target node is selected as

he available bandwidth for data prefetching. 2 © Per block transfer

ime is computed in Algorithm 1 line 8. 3 © The time left of map

asks in each node is estimated in Algorithm 1 lines 9 ∼12. 4 © Fi-

ally, the node which can complete data prefetching before releas-

ng its compute resources is added to candidateNodes (Algorithm 1

ines 13 ∼17).

.1.3. Map task preselection

In this part, non-node locality map tasks relative to the can-

idate compute nodes preselected by step of Section 3.1.2 will be

creened out from the failed map tasks and the unassigned map

asks of the jobs. The unexecuted and the failed map tasks of cur-

ent running jobs are regarded as the candidate map tasks. In order

o re-schedule the failed map tasks to finish the executing jobs as

oon as possible, the failed map tasks’ data prefetching should be

one in priority.

For each map task in the candidate map task set, if the map

ask is node locality relative to the candidate compute nodes, this

ap task will be deleted from the candidate map task set, as this

ap task does not need data prefetching. These map tasks which

ave the non-node locality relative to the candidate nodes in can-

idateNodes are selected as the prefetching map tasks. The process

f the non-node locality map tasks preselection is as follows.

1) For failed map tasks in set the of failedMaps , the map tasks

which have node locality relative to the candidate nodes in can-

didateNodes are deleted from failedMaps and the corresponding

nodes are deleted from candidateNodes , only the non-node lo-

cality map tasks are kept left. If there are no candidate nodes

left in candidateNodes , the process of map task preselection will

end.

C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149 137

Algorithm 1 Compute nodes preselection.

Input: All nodes in centralized hybrid cloud cluster { Node 1 , Node 2 , …, Node n }

Output: The preselected candidate nodes candidateNodes = { Node 1
′ , Node 2

′ ,…, Node k
′ }

1. for each Node i do // Node i is computing node

2. getCloudType (Node i); // Obtain Node i ’s cloud type (private or public);

3. B W i ← getBand W id t h i (sourceNod e j) , j = 1 , .., 4 //Acquire idle bandwidth of Node i from source nodes

4. if max (B W i) = 0 then // Node i has no idle bandwidth available

5. delete (Node i);

6. go to Nod e i +1

7. end if

8. T perblock
i

= S block / max (B W i) //Per block transfer time to Node i
9. for each m j ∈ Nod e i , j = 1 ..M do // m j is the running map task j in Node i

10. T le f t
i j

= pr g i j / (1 − rat e i j) = (D total
i j

− D read
i j

)(T curr
i j

− D schd
i j

) / D read
i j

11. end for

12. T le f t
i

← min(T le f t
i j

) //Remaining execution time of Node i

13. if T le f t
i

< T perblock
i

then

14. delete (Node i)

15. go to Nod e i +1

16. end if

17. candidateNodes ← Node i // Add Node i to the candidate node set

18. end for

19. Sort the nodes in candidateNodes according to their min remaining execution time on ASC

(

(

(

w

3

c

s

p

e

n

d

s

o

t

k

t

a

i

b

l

t

b{

q
2) For non-node locality failed map tasks, they are sorted accord-

ing to the required resources, then added to the set of the can-

didate prefetching map tasks prefetchMaps .

3) For unassigned map tasks in the set of pendingMaps , the map

tasks which have node locality relative to the candidate nodes

in candidateNodes are deleted from pendingMaps and the corre-

sponding nodes are deleted from candidateNodes , only the non-

node locality map tasks are left. If there are no candidate nodes

left in candidateNodes , the process of map task preselection will

end.

4) For the non-node locality map tasks, they are sorted in accor-

dance with their required resources, then added to the end of

the candidate prefetching map tasks set prefetchMaps .

Algorithm 2 depicts the pseudo-code for map task preselection,

hich is shown as follows.

.1.4. Input data prefetching

In order to take full advantage of the network bandwidth in

entralized hybrid cloud, in each round prefetching, the data blocks

hould be pre-fetched as many as possible. The process of data

refetching described as follows.

(1) For each map task in prefetching map task set prefetchMaps ,

the target compute node that meets its required resources is

searched from the candidate compute node set candidateN-

odes .

(2) If no compute node is found, this map task will be deleted

form prefetchMaps , then the compute node for next map task

will be found; else, according input data metadata informa-

tion, the data source node of the map task is found.
Algorithm 2 Map tasks preselection.

Input: The failed map tasks failedMaps ; unassigned map task

Output: The non-node locality map tasks prefetchMaps ; the n

1. for each map task i in failedMaps / pendingMaps do

2. if map task i has node locality relative to node j in can

3. Delete map task i from failedMaps / pendingMaps

4. Delete node j from candidateNodes

5. if candidateNodes is null then

6. Break // end this algorithm

7. end if

8. end if

9. end for

10. Add map tasks of failedMaps / pendingMaps to prefetchMap
As the input data of jobs are stored in distribution in HDFS,

ach data block has multiple copies distributed over different

odes. Thus, each map task has multiple source data nodes. In

ata prefetching, the nearest data source node is selected as the

ource data node. According to the network topology information

f Hadoop cluster in the centralized hybrid cloud, distance be-

ween the source data node and the target compute node can be

nown, and data block transfer time can be calculated.

(3) According to data block transfer time, the map task whose

data block transfer time is less than the max permitting time

T of data prefetching, its scheduling tuple (including task Id,

source data node, target compute node and data block trans-

fer time) is let insert to the scheduling list schedulerList for

input data prefetching. After that, this map task is deleted

from prefetchMaps and the target compute node is deleted

from candidateNodes .

In Hadoop cluster, all slaver nodes send heartbeat periodically

o the master node to report their status. Then, the master node

ssigns tasks to the slaver nodes which have free containers. That

s, currently busy nodes will not have new tasks being assigned

efore next heartbeat arrives even if the containers have been re-

eased. Assume the heartbeat cycle of Hadoop cluster is Heart , thus,

he maximum permit time T for data prefetching by using the idle

andwidth should satisfy the conditions listed in formula (4) .

T > max
(
T perblock

i

)
, i ∈ [0 , p)

T = n ∗ Heart, n ∈ Z
(4)

From formula (4) , in order to ensure the slowest node can ac-

uire the data block in each round data prefetching, the maximum
s pendingMaps ; the candidate nodes candidateNodes

on-node locality candidate nodes candidateNodes

didateNodes then

s

138 C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149

Algorithm 3 Input data prefetching.

Input: Preselected non-node locality map tasks pre fetchMaps = { mapTas k i } ;
Preselected candidate compute nodes cand id ateNod es = { Nod e j }

Output: Data blocks to be fetched I = { dataBloc k b } , b = 0 ..B

1. for each mapTask i ∈ prefetchMaps do

2. Node t ← Search compute node from candidateNodes for mapTask i according to the required resources

3. Node s ← Search the nearest source data node

4. BW s, t ← Get communication bandwidth between Node t and Node s

5. T perBlock
i

= S block / B W s,t // One data block transfer time

6. if T perBlock
i

< T && num (dataBlock i) < threshold (dataBlock) then

/ ∗ num (dataBlock i)is the number of replicas of dataBlock i ; threshold (dataBlock) is the max number of replicas of each data block allowed in HDFS ∗/

7. Add tuple (mapTas k i , Nod e t , Nod e s , T
perBlock

i
) to scheduleList

8. num (dataBloc k i) = num (dataBloc k i) + 1

9. Set Node t the flag of being assigned

10. end if

11. end for

12. Fetch input data for map tasks in scheduleList from the source nodes to the target nodes

13. Update metadata information in ResourceManager

14. Update the data block information in HDFS

H

p

s

t

a

t

d

s

w

u

e

m

c

t

i

a

t

d

o

t

t

m

p

a

u

w

c

l
permit time T for data prefetching should satisfy the condition

that T > Max (T
perBlock

i
) , i ∈ [0 , p] , here, p is the number of the data

source nodes of map task i . Since task assignment in Hadoop clus-

ter proceeds in accordance with the heartbeat cycle, after a node

released its container, the node can keep its idle bandwidth until

the next heartbeat arrives. That is, the maximum permitting time

of data prefetching should be an integer multiple of the heart beat

cycle, i.e. T = n ∗ Heart, n ∈ Z, here Z is the integer set.

(4) According to scheduling list scheduleList , data chunks of all

map tasks are fetched from their data source nodes to their

target compute nodes. Then, the metadata information of

ResourceManager and data blocks metadata information in

HDFS are updated.

The algorithm of scheduling-aware data prefetching for data lo-

cality in centralized hybrid cloud is a cyclic process. In each loop,

a new round of compute nodes preselection, map task preselec-

tion and input data prefetching is performed to achieve the real-

time and efficient data locality optimization. Algorithm 3 depicts

the pseudo-code for input data prefetching.

3.2. File synchronizing for data locality in distributed hybrid cloud

In order to provide long-term and stable cloud services for

users, combining with the advantages (stability and high resis-

tance to disaster) of distributed hybrid cloud, considering job level

task scheduling from cloud-layer, this paper proposed a file syn-

chronizing method for data locality in distributed hybrid cloud

(DHCDLO-Sync). This method aims to transfer popular data files of

jobs to the sub-clouds of hybrid cloud beforehand, so that jobs can

access input data from local HDFS when execution, avoiding the

waiting delay caused by cross-cloud data transmission. This shame

can be divided into two steps: sync file preselection and file syn-

chronization among sub-clouds. Firstly, according to files usage in

local HDFS and confined conditions set by administrator, hot files

are selected. Secondly, through information interaction among re-

source scheduling servers of the sub-clouds in distributed hybrid

cloud, hot files are synchronized periodically to each sub-cloud,

such that prior to the jobs’ assignment to the sub-clouds, most or

all of their input data had been synchronized to the sub-clouds,

which can reduce execution waiting delay of jobs, improve execu-

tion efficiency of the sub-cloud, and hence increase the efficiency

of the whole distributed hybrid cloud.

3.2.1. Sync file preselection

In this step, synchronous files are selected to synchronize

among sub-clouds. First, the access frequency of each file in local
DFS is analyzed. Second, by comparing file popularity with the

redefined threshold, hot files are selected as the sync files.

Assume the total number of times that file access is cnt i, acc , the

tatistical interval is [T i, start , T i, now

], then, the access frequency of

he file is,

f r q i,acc = cn t i,acc / (T i,now

− T i,start) (5)

Suppose the influence factor of the restrictive conditions (such

s access authority, data security, read only, etc.) set by adminis-

rator is filter , according to the affect extent of the restrictive con-

itions on file popularity, the value of the influence factor filter

hould be adhere to,

f il ter =

{

0 Limit
1 unLimit
+ ∞ special Limit

(6)

here Limit indicates data files dissatisfy the restrictive conditions,

nLimit means data files have no restrictive conditions, specialLimit

xpresses data files should satisfy special conditions, such as they

ust be synchronized to other sub-clouds unconditionally.

The popularity reflects the quantity and intensity being ac-

essed of a file, which can be formulated as,

po p i = f ilter ∗ f r q i,acc = f ilter ∗ c t i,acc / (T i,now

− T i,start) ,

f ilter ∈ { 0 , 1 , + ∞ } (7)

In which, filter is the influence factor of the restrictive condi-

ions; ct acc indicates file i ’s access times; T i, now

expresses the fin-

sh time of file access statistics; T i, start shows the start time of file

ccess statistics. From formula (7) we can learn, the more popular

he file, the greater the probability of the file becoming jobs’ input

ata.

As popular files are most likely to be the input data of jobs, in

rder to improve sub-clouds’ data locality and reduce jobs comple-

ion time, the most popular files in each sub-cloud can be prefetch

o other sub-clouds in advance. However, data files prefetching

ay increase the burden of network, thus only the files whose

opularity is higher than the sub-cloud’s popularity threshold are

llowed to be prefetched to other sub-clouds. The sub-cloud’s pop-

larity threshold pop thred is formulated as,

po p thred = 2 ∗ 1

n

n ∑

i =1

po p i (8)

here, 1
n

∑ n
i =1 po p i is the average popularity of the files in the sub-

loud’s local HDFS, n is the number of files in local HDFS.

Finally, sync files preselection is performed according to the fol-

owing regulations: If a file’s popularity is larger than sub-cloud’s

C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149 139

Algorithm 4 Sync file preselection.

Input: Files in local HDFS of sub-cloud i , f = { f 1 , f 2 , ..., f n } ,
Output: The sync files syncF iles = { f ′ 1 , f ′ 2 , ..., f ′ m }
1. for each f i ∈ f do

2. f r q i,acc = cn t i,acc / (T i,now − T i,start) // File access frequency

3. f il ter =

⎧ ⎨

⎩

0 Limit

1 unLimit

+ ∞ special Limit

// Restrictive conditions influence factor

4. po p i = f ilter ∗ f r q i,acc = f ilter ∗ c t i,acc / (T i,now − T i,start) // File popularity

5. po p thred = 2 ∗ 1
n

∑ n
i =1 po p i // File popularity threshold

6. if pop i > pop thred then

7. Add f i to syncFiles // Save file f i to syncFiles

8. end if

9. end for

p

t

fi

i

l

t

h

c

3

i

c

o

l

c

o

c

c

l

L

t

m

w

o

t

c

a

w

t

i

s

fi

t

m

m

o

t

a

p

c

S

A

p

s

D

b

f

p

t

p

c

t

4

w

d

l

p

i

t

c

t

t

t
opularity threshold, i.e. pop i > pop thred , the file will be chosen as

he sync file and appended to the sync file set syncFiles ; else this

le will not be added to the sync file list.

Algorithm 4 depicts the pseudo-code for sync file preselection

n each sub-cloud. Firstly, for each file in sub-cloud i , the popu-

arity is calculated (Algorithm 4 lines 1 ∼4). Then, the popularity

hreshold of sub-cloud i is calculated (Algorithm 4 line5). Finally,

ot files are selected as the sync files to synchronize to other sub-

louds (Algorithm 4 lines 6 ∼8).

.2.2. File synchronization among sub-clouds

Files synchronization among sub-clouds is the process of copy-

ng popular data files of local HDFS to other sub-clouds in periodi-

ally during the communication of the resource scheduling servers

f sub-clouds in distributed hybrid cloud. Files synchronization fol-

ows the steps of 1 © planning sub-clouds’ synchronizing order ac-

ording to their workloads and 2 © synchronizing popular files to

ther sub-clouds.

(1) Sub-clouds’ synchronization planning

Before popular files’ synchronization, the workload of all sub-

louds in the distributed hybrid cloud should be calculated ac-

ording to formula (9) . In the process of file synchronization, light

oaded sub-clouds are synchronized first.

 i = w 1 U

cpu
i

+ w 2 U

mem

i (9)

In formula (9) , L i is the workload of sub-cloud i ; U

cpu
i

represents

he average CPU usage of sub-cloud i ; U

mem

i
indicates the average

emory usage of sub-cloud i; w 1 is the weight of CPU usage and

 2 is the weight of memory usage in the sub-cloud.

Each sub-cloud has a certain workload limit, if the workload

f a sub-cloud exceeds its maximum workload, i.e. L > L max , then
i

Algorithm 5 File synchronization among sub-clouds.

Input: The resource scheduling server address list in hybrid cloud syncList

Output: The copies of the files that synchronized to different sub-clouds

1. for each addr i ∈ syncList do

2. L i ← Compute sub-cloud workload

3. if L i > L max then // if workload larger than the threshold, the sub-clou

4. delete addr i from syncList

5. end if

6. end for

7. Sort syncList on ASC according to sub-clouds’ workload

8. for each addr j ∈ syncList do

9. Connect to the j - th sub-cloud

10. for each f i ∈ syncFiles do

11. if f i is not in the HDFS of the j - th sub-cloud then

12. Synchronize f i to the HDFS of the j - th sub-cloud

13. end if

14. end for

15. Disconnect the j - th sub-cloud

16. end for
his sub-cloud is considered in its full capability, and cannot afford

omputing services for user requests any more. Hot files are not

llowed to be synchronized to this sub-cloud and this sub-cloud

ill be deleted from sub-clouds sync list syncList . In order to let

he light loaded sub-clouds be synchronized in priority, sub-clouds

n syncList should be sorted on ascending.

(2) Data file synchronization among sub-clouds

For each sub-cloud in syncList , whether all popular files in file

ync set syncFiles exist in local HDFS is checked. If not, the absent

les will be synchronized to this sub-cloud, so that jobs can access

hem locally. Moreover, in order to avoid unnecessary data trans-

ission and reduce the overhead caused by cross-cloud data trans-

ission, file replication factor of each sub-cloud is set to 1, that is,

nly one copy of each file is allowed to be synchronized remotely

o this sub-cloud.

Algorithm 5 depicts the pseudo-code of file synchronization

mong sub-clouds, which is shown as follows. Planning partici-

ated sync sub-clouds and sorting their synchronizing order ac-

ording to workload is carried out in Algorithm 5 lines 1 ∼7.

ynchronizing popular files among sub-clouds is implemented in

lgorithm 5 lines 8 ∼16.

The process of remote file transmission can be realized via FTP

rogramming interface provided by HDFS of Hadoop, which is es-

entially the process of cross-cloud data transmission on Internet.

ifferent from the centralized hybrid cloud which transfers data

locks by sockets and needs to update/modify the metadata in-

ormation about data blocks in NameNode of HDFS to keep the

refetched input data stay in the compute node after their use,

he data locality optimization in distributed hybrid cloud is im-

lemented through FTP transmission by using remote procedure

all interface (RPC) provided by Hadoop, while does not involve

he modification of MapReduce framework and HDFS metadata.

. Application scenarios: online cloud gaming industry

In order to illustrate the validity of our algorithms for real life

orkloads, we design the industry motivating scenario. With the

evelopment of cloud technology, as an emerging paradigm of on-

ine entertainment industry, cloud gaming, which allows users to

lay high quality video games instantly without downloading or

nstalling the original game software, has attracted significant at-

ention (Wu et al., 2014 ; Cai and Leung, 2012). Similar to many

loud computing services, cloud gaming service has serval advan-

ages in contrary to conventional video game business, such as

erminal hardware constraints overcoming, salability, cost effec-

iveness, cross-platform support, effective antipiracy solution, and
= { ad d r 1 , ad d r 2 , ..., ad d r n } ; The sync files sync F iles = { f 1 , f 2 , ..., f n } ;

d is not allowed synchronizing

140 C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149

Fig. 3. Our proposed method in cloud gaming scenario.

r

h

l

i

a

o

s

g

w

s

t

g

d

t

t

R

i

n

n

b

p

c

i

s

i

so on (Cai et al., 2014). However, massive video rendering and

encoding put forward higher requirements for computation and

storage performance. Moreover, high-quality and high-frame-rate

video transmissions often consume huge amount of bandwidth

(Cai et al., 2014). In case of cloud bursting occasions, such as at

weekend, in holidays, or on occasion of new game release, on-

premise resource provision for game playing cannot afford so many

players’ requests, and extra resources are needed. However, due

to the high initial capital expenditure and re-occurring operating

expenditure, it is costly for gaming providers to procure all in-

frastructures to afford for cloud bursting. Therefore, hybrid cloud

which uses both private and public resources becomes an alterna-

tive choice (Lu et al., 2015). Depending on game process demand,

gaming providers can operate the private resources of their own,

or rent resources from public clouds. Here, we take the central-

ized hybrid cloud as the example to illustrate the scenario of our

scheduling-aware data prefetching for data locality algorithm ap-

plying in online cloud gaming, which is as Fig. 3 .

As shown in Fig. 3 , the structure of the online cloud gaming

is mainly consists of two parts: client side and hybrid cloud gam-

ing center. The hybrid cloud gaming provider provides game ser-

vices to players located in geo-distributed zones. In client side,

each zone has a service proxy, and the players’ game requests are

first sent to the proxies in their zones and then routed to the hy-

brid cloud for further processing. The hybrid cloud gaming center

is composed of private cloud and public cloud. In which, all game

nodes are managed by the manager server which acts as hybrid

cloud master scheduling server. The manager server can be either a

powerful machine or a server cluster, which in charges of requests

receiving, task dispatching, resource allocation, information search,

capacity expansion decision making, etc. The game nodes/servers

are mainly responsible for initializing the execution environ-

ment, running game tasks, transmitting game video streaming and

eporting the running state of its own. In order to manage the

ybrid cloud well, there usually a monitor node set in the pub-

ic cloud to monitor the state of running game servers. The mon-

tor node communicates with the manager server periodically,

nd reports the state of these game servers. The algorithm of

ur scheduling-aware data prefetching is running on the manager

erver.

In hybrid cloud gaming scenario, the processing workloads are

ame videos, the jobs are regarded as online gaming applications,

hich usually associate with a sequence of video processing tasks

uch as rendering, capturing, encoding, transmitting, etc. Essen-

ially, a cloud game is a software program written in some pro-

ramming language. Regardless of object- or procedure-oriented

esign, we consider gaming as a loop procedure that enables in-

eraction between players and game logic.

In this section, we take rendering task as the instance to illus-

rate the process of how our approach applying in this scenario.

endering tasks are usually processed in parallel. For node local-

ty rendering tasks, they are scheduled directly to corresponding

odes which have stored their game video chunks. As for non-

ode locality rendering tasks, in order to reduce the waiting time

efore tasks’ execution, game video chunks are prefetched to com-

ute nodes in advance, which can reduce rendering tasks’ data ac-

ess waiting delay significantly. It is in this manner, data locality

s exploited. The process of our scheduling-aware data prefetching

trategy for data locality applying in hybrid cloud gaming scenario

s described as follows.

(1) Resource allocation. In centralized hybrid cloud, the al-

gorithm of scheduling-aware data prefetching is running

on the master scheduling server. Upon receiving a con-

nection request from a player, if there are available on-

premise resources, the master scheduling server will launch

a dedicated server (either a physical machine or a virtual

C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149 141

Table 1

Public clouds server instances configuration.

Provider Instance

Microsoft Node 1 ∼10: CPU 2.6 Ghz Core: 1, Memory: 1 GB, Disk: 50 GB

Amazon Node 1 ∼10: CPU 2.4 Ghz Core: 1, Memory: 1 GB, Disk: 80 GB

Alibaba Node 1 ∼10: CPU 2.5 Ghz Core: 1, Memory: 1 GB, Disk: 70 GB

Table 2

Private cloud hardware configuration.

Host Hardware configuration

Node 1 CPU: Intel Xeon E3, Memory: 4 GB, Disk: 1 TB, Number of NIC: 4

Node 2 CPU: Intel Xeon E3, Memory: 16 GB, Disk: 1 TB, Number of NIC: 4

Node 3 CPU: Intel Xeon E5, Memory: 2 GB, Disk: 500 GB, Number of NIC: 4

Table 3

Private cloud VM instances configuration.

Host VM configuration

Master CPU 3.4 Ghz Core: 4, Memory: 4 GB, Disk: 500 GB

Node 1 ∼10 CPU 2.5 Ghz Core: 1, Memory: 2 GB, Disk: 80 GB

5

5

s

s

(

a

S

n

t

h

1

i

i

m

h

n

p

o

V

5

i

i

m

m

f

l

s

i

w

t

t

c

5

5

a

c

d

I

fi

n

t

c

machine) to run the game and stream gaming video to user

client.

(2) Capacity expansion. When the capacity of the private cloud

cannot meet the demand, user’s requests will be held in

a rendering queue, extra resources from public cloud are

rented and virtual machines (VMs) are created dynamically

to guarantee the quality-of-service (QoS) of game service.

(3) Data locality task scheduling. In Hadoop-based hybrid cloud,

games are rendered in parallel, and processed by multi-

ple mappers. In each round rendering task scheduling, the

master scheduling server checks the state of each node in

the cluster, estimates their remaining execution time, and

finds those nodes that are likely to release their compute

resources. In next scheduling round, the master scheduling

server will assign the rendering tasks to the nodes who have

stored their gaming video files.

(4) Non data locality tasks data prefetching. As for non-node

locality rendering tasks, the nodes whose resource releas-

ing time is a bit longer than the time of prefetching a

game video chunk from the nearest replica node are selected

as the candidate game rendering servers. The game video

chunks of those non node locality rendering tasks are pre-

fetched to corresponding game rendering servers according

to the resource matching results.

. Experiments

.1. Experiment environment

To construct hybrid cloud, in this experiment, 10 Aliyun

erver instances (Aliyun ECS), 10 Microsoft Azure server in-

tances (Microsoft Azure) and 10 Amazon EC2 server instances

 Amazon EC2) are rented as the public clouds; three Inspur servers

re used to structure the private cloud. Based on them an Open-

tack system (Mirantis OpenStack) is deployed to virtualize more

odes for establishing Hadoop cluster. Upon on OpenStack, 11 vir-

ual machines (VMs) are virtualized. We deploy Hadoop-2.7.1 over

ybrid cloud as the cloud platform. We use VMware Workstation

1.1.2 as the virtualization solution. On each node, Ubuntu-14.04.1

s deployed as the base operating system and JDK-7u79-linux-x64

s installed as the Java development kit. The integrated develop-

ent environment is MyEclipse equipped with Hadoop plug-in
adoop-eclipse-plugin-2.7.1. A 10 0 0 Mbps router is adopted to con-

ect the private cloud with the public clouds. The configuration of

ublic cloud server instances is shown as Table 1 ; the configuration

f 3 Inspur servers is shown as Table 2 , upon which 11 virtualized

Ms are shown as Table 3 .

.2. Evaluation metrics

(1) Data locality percentage

In our experiment, the data locality percentage of map tasks

s adopted as the metric to measure the locality level of schedul-

ng algorithms. Suppose the number of data locality map tasks is

apCnt node , and the total number of map tasks in the system is

apCnt all , then the data locality percentage of map tasks can be

ormulated as,

 ocal it y node = mapCn t node / mapCn t all (10)

(2) Job completion time

In this paper, we define the job completion time cpt job as the

um of job waiting time wtt job and its actual execution time ect job ,

.e. the turnaround time between when a job is submitted and

hen the job is completed (Saraswathi et al., 2015). Job comple-

ion time represents how fast a user receives the response from

he system after a job is submitted, which can be formulated as,

p t job = wt t job + ec t job (11)

.3. Hybrid cloud construction

.3.1. Centralized hybrid cloud establishment

In centralized hybrid cloud, all servers are configured in VLAN,

n Intel i5 desktop computer works as the VPN server. Hadoop

onfiguration file of centralized hybrid cloud is set up in accor-

ance with the Hadoop configuration process of LAN. We use VLAN

Ps to configure Hadoop host address mapping table, i.e. the hosts

le of configuration system, to make the communication of the

odes in the cluster being proceeded over VLAN, so that avoiding

he limits of networks during communication. Hadoop hosts file is

onfigured as Table 4 .

142 C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149

Table 4

Hadoop hosts file configuration.

Host name local host master slave1 slave2 slave3

VLAN IP address 127.0.0.1 192.168.5.11 192.168.5.21 192.168.5.22 192.168.5.23

Host name vpn server slaveX1 slaveX2 slaveX3 slaveX4 ∼X6

VLAN IP address 192.168.5.5 192.168.5.101 192.168.5.102 192.168.5.103 192.168.5.104 ∼106

Fig. 4. The flow diagram of prefetching algorithm.

5

a

T

a

r

c

b

n

s

b

n

a

c

t

s

i

j

r

c
The VPN server works as the transit point for private cloud and

public cloud communication, bounded with two network interface

cards, one of which configures with a LAN IP to communicate with

the private cloud, the other of which configures with a WAN IP to

communicate with the public cloud. According to the content of

hosts file, the VPN IPs address pool is configured. Through VPN

client, Hadoop nodes are connected to VPN server. Thus, all of

them can work in VLAN and have a fixed VLAN IP. As the gate-

way of VLAN, VPN server plays the role of routers and switches,

routing and forwarding data for nodes communication in Hadoop-

based hybrid cloud.

In centralized hybrid cloud, there is only one Hadoop plat-

form deployed. Our data prefetching algorithm runs on the mas-

ter scheduling server of the cluster, and interacts with Hadoop

jobs. Jobs from client nodes are submitted to the master schedul-

ing server. The nodes rented from public clouds are moved in and

out of Hadoop cluster dynamically on demand. The flow diagram

of the prefetching algorithm can be shown as Fig. 4 . In each round

job scheduling, the steps of the prefetching algorithm are as fol-

lows.

1 © Firstly, candidate nodes for prefetching are preselected. In

Hadoop, all compute nodes regularly send heartbeat to the

master scheduling server to report their running condi-

tions. The master scheduling server assigns tasks to the
compute nodes with idle containers. Therefore, the main ba-

sis for the selection of candidate compute nodes is the pos-

sibility of current release of busy containers on the com-

pute node. Obviously, the nodes with the fastest task exe-

cution are most likely to release busy containers. In addi-

tion, only these nodes which can complete data prefetching

before busy container release are selected as the candidate

prefetching nodes. Thus, the nodes which are most likely to

release busy containers and able to complete data prefetch-

ing before busy containers release are selected as the candi-

date compute nodes.

2 © Secondly, non-node locality tasks are preselected. It is

known that, node locality map tasks need not data prefetch-

ing, we just consider the non-node locality map tasks for

data prefetching. In each round scheduling, the un-running

map tasks and the failed map tasks of currently running job

are regarded as the candidate map tasks. For each candidate

map task, if there is a candidate compute node had stored

its input data, this map task has node locality relative to

the candidate compute node. Then, this map task should be

deleted from candidate map task set and the corresponding

node should be deleted from the candidate compute node

set. Thus, the tasks left in the candidate map task set are

the non-node locality map tasks, and the nodes left in the

candidate compute node set are the candidate target com-

pute node for data prefetching.

3 © Finally, according to the resource matching rules, the candi-

date compute nodes are traversed to find suitable resource

for each non-node locality map task. After that, the sched-

uler lunches the prefetching process to prefetch part or all of

map tasks’ input data from their replica nodes to the com-

pute nodes before these tasks are scheduled, so that data

read waiting delay can be reduced during task execution,

thus the response time of jobs can be decreased.

.3.2. Distributed hybrid cloud establishment

Each sub-cloud of the distributed hybrid cloud is deployed

n independent Hadoop platform, all sub-clouds status are equal.

he master node which in charges of sub-cloud communication

nd job collaborative process is also serves as the sub-cloud’s

esource scheduling server. Different from the centralized hybrid

loud, information interaction among sub-clouds in distributed hy-

rid cloud is carried out through resource scheduling servers. The

odes in one sub-cloud cannot access the nodes that are not in the

ame sub-cloud directly, as their communication must be passed

y the resource scheduling servers. Besides LAN IP, the master

ode of each sub-cloud is also configured a WAN IP, so as to inter-

ct with other sub-clouds’ master nodes in the distributed hybrid

loud.

Our file synchronizing algorithm runs on each sub-cloud’s mas-

er scheduling server (also the name node of HDFS). The master

cheduling server interacts with other sub-clouds’ master schedul-

ng servers to process client jobs cooperatively, receives incoming

obs and the necessary input data, and feeds back the execution

esults up to the client during information interaction. In each sub-

loud, hot files are searched from local HDFS. Then, these hot files

C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149 143

Fig. 5. The flow diagram of sync algorithm.

a

i

a

g

w

t

i

S

t

e

d

T

5

a

a

Table 5

Initial status of files in private cloud.

File name Size/Number of access times/Last access time

Testlog1 59.5 MB/ 190,823/ 2016–07–01

Testlog2 38.8 MB/ 110,097/ 2016–07–23

Testlog3 50.5 MB/ 122,301/ 2016–07–23

Testlog4 57.8 MB/ 110,651/ 2016–08–30

Testlog5 49.5 MB/ 133,403/ 2016–09–11

Testlog6 48.8 MB/ 34,532/ 2016–09–20

Testlog7 56.6 MB/ 48,792/ 2016–09–23

Testlog8 59.7 MB/ 56,842/ 2016–09–23

Testlog9 63.2 MB/ 31,668/ 2016–09–23

Testlog10 47.3 MB/ 52,487/ 2016–09–30

G

s

m

c

w

t

o

t

r

i

a

t

5

o

C

j

g

c

c

e

p

r

i

r

t

a

l

(

P

S

p

p

t

s

l

o

P

a

i

r

a
re transferred to other sub-clouds periodically during information

nteraction. The flow diagram of the sync algorithm can be shown

s Fig. 5 . In each round synchronizing, the process of the sync al-

orithm is implemented as:

1 © Sync files preselection. The popularity of each file in local

sub-cloud HDFS is computed. The files whose popularities

are larger than the threshold are selected as the sync files

that to be synchronized to other sub-clouds.

2 © File synchronization. The master scheduling server of local

sub-cloud connects with other sub-clouds master scheduling

servers via querying the server address list. After connected

to a sub-cloud, through information interaction the master

scheduling server knows about if the connected sub-cloud

had saved all of the sync files. If not, the master scheduling

server will choose the absent sync files to transmit to the

sub-cloud through FTP programming interface provided by

HDFS.

According to formula (7) and (8) , file heat and the threshold

ill be changed due to files synchronization before and after every

est, therefore the experimental context should be restored to its

nitial status before each test. To obtain more files during DHCDLO-

ync algorithm’s evaluation, parameter filter is set to 1, that is,

here are no extra restrictions on file synchronizing filtering. In our

xperiment, data files in private cloud are used as the jobs’ input

ata. The initial status of data files in private cloud is shown as

able 5 , in which the number of replicas of each file is 1.

.4. Experimental results analysis

In this section, Hadoop benchmark applications Grep, TeraSort

nd WordCount are adopted as the submit jobs, 10 log files (shown

s Table 5) are employed as the input data. The applications of
rep, TeraSort and WordCount are typical MapReduce jobs for mea-

uring performance of Hadoop. Grep is used for extracting the

atching strings in large file; Terasort is adopted to sort the large

ollection of data; while WordCount counts how many times of

ords occur in the file. Among which, Grep and TeraSort are I/O in-

ensive while WordCount is CPU intensive workload. By comparing

ur proposed algorithms with the Capacity (Capacity Scheduler),

he Fair (Fair Scheduler), the DARE (Abad et al., 2011) algo-

ithms, the performance of the scheduling-aware data prefetch-

ng algorithm and file synchronizing algorithm are evaluated in

ccordance with node locality percentage and job completion

ime.

.4.1. Performance analysis under centralized hybrid cloud

(1) Algorithm performance comparison under different job

execution times

Fig. 6 illustrates the performance effect of job execution times

n our algorithm and the baseline algorithms. In this test, Word-

ount job is adopted as the submitted job. As shown as Fig. 6 , with

ob execution, data locality percentage of the CHCDLOS-Prefetch al-

orithm and the DARE algorithm increase, while there almost no

hange in that of the Capacity and the Fair algorithms. That’s be-

ause, the DARE and the CHCDLOS-Prefetch algorithms had consid-

red data locality optimization in their scheduling. However, our

roposed CHCDLOS-Prefetch algorithm outperforms the DARE algo-

ithm significantly. As Fig. 6 indicates, after multi-round schedul-

ng, the node locality percentage of our CHCDLOS-Prefetch algo-

ithm is in proximity to 100%, that’s to say, when job executes

o a certain number of times, each node may be prefetched

 replica of the input data, each map task may achieves node

ocality.

2) Performance comparison under different types of jobs

In this part, we perform baseline algorithms and our CHCDLOS-

refetch algorithm with different types of jobs, the Grep , the Tera-

ort and WordCount , and compare them in accordance with the

erformance metrics of node locality percentage and job com-

letion time. The algorithms execute each job continuously for 3

imes, the mean of 3 times execution is used as the measuring re-

ults of performance metrics. Figs. 7 and 8 show the average node

ocality percentage and average job completion time respectively

f different scheduling algorithms.

As shown in Fig. 7 (a), when execute the Grep job, our CHCDLOS-

refetch algorithm has the highest average data locality percent-

ge than the other baseline algorithms. Compared to the Capac-

ty , the Fair and the DARE algorithms, the CHCDLOS-Prefetch algo-

ithm can increase the average data locality by up to 21.6%, 17%

nd 7% respectively. The same performance trends are shown in

144 C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149

Fig. 6. Algorithm performance comparison under different job execution times.

Fig. 7. Performance comparison under different type of jobs.

Fig. 8. Performance comparison under different type of jobs.

a

a

l

j

T

P

t

m

d

c

t
Fig. 7 (b) and (c) when process the TeraSort job and the WordCount

job, however, our CHCDLOS-Prefetch algorithm always has the bet-

ter data locality than the other benchmarks. That’s because, in our

CHCDLOS-Prefetch algorithm, we had considered prefetching input

data to target compute nodes in advance and retaining the data in

the compute nodes to enhance job’s data locality. From Fig. 7 (a),

(b), (c) we can conclude that, our CHCDLOS-Prefetch method has

the stable superiority in performance of data locality under differ-

ent types of jobs.

As shown as Fig. 8 , compare to the baseline algorithms, our

CHCDLOS-Prefetch algorithm has the least average job completion

time when process different types of jobs. As Fig. 8 (a) shows,

when process the Grep job, the CHCDLOS-Prefetch algorithm can re-

duce the job completion time by 12%, 11.7% and 6.6% respectively

compare to the Capacity , the Fair and the DARE algorithms; when

process the TeroSort job, shown in Fig. 8 (b), the CHCDLOS-Prefetch

s
lgorithm can reduce job completion time by up to 10.9%, 10.6%

nd 5.3% respectively; and when process the WordCount job, il-

ustrated as Fig. 8 (c), the CHCDLOS-Prefetch algorithm can reduce

ob completion time by up to 12.5%, 12% and 5.9% respectively.

hrough performance comparison, the superiority of our CHCDLOS-

refetch algorithm in average data locality and average job comple-

ion time under different types of jobs is verified.

(3) Comparison under different number of public cloud

nodes

By resuming the experimental settings to its initial status, we

easured the data locality percentage of these algorithms under

ifferent number of public cloud nodes. When WordCount job exe-

uted for three times, the average data locality percentage of map

asks changing with the number of public cloud nodes can be

hown as Fig. 9 . When the job executed for 5 times, the average

C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149 145

Fig. 9. Average node locality percentage of map tasks when job executed for 3

times.

Fig. 10. Average node locality percentage of map tasks when job executed for 5

times.

d

o

d

a

D

r

a

p

i

a

i

t

i

b

5

a

c

F

t

w

b

c

l

Fig. 11. The input data read percentage from local and remote sub-clouds.

Fig. 12. The input data read percentage changes with the sub-cloud’s workload.

Fig. 13. Node localtiy percentage of map tasks.

i

p

w

b

s

t

u

a

A

t

w

i
ata locality percentage of map tasks changing with the number

f public cloud nodes is shown as Fig. 10 .

From Fig. 9 , as the number of public cloud nodes increases, the

ata locality percentage decreases. While, the data locality percent-

ge of map tasks under the CHCDLOS-Prefetch algorithm and the

ARE algorithm are higher than that of under the Capacity algo-

ithm and the Fair algorithm. That’s because, our CHCDLOS-Prefetch

lgorithm and the DARE algorithm have considered increasing in-

ut data replicas to aid the scheduler to achieve better data local-

ty.

After the job executed for 5 times, as shown in Fig. 10 , the aver-

ge data locality percentage under our CHCDLOS-Prefetch algorithm

s better than that of under the baseline algorithms. It indicates

hat the CHCDLOS-Prefetch algorithm has pre-synchronized more

nput data than that of the DARE algorithm at runtime, thus has

etter data locality.

.4.2. Performance analysis under distributed hybrid cloud

(1) Input data read percentage

With the execution of DHYDLO-Sync algorithm, the percent-

ge of input data read from local sub-cloud and remote sub-

louds are shown as the red histogram and blue histogram in

ig. 11 respectively. As shown in Fig. 13 , with the execution of

he algorithm, the input data read from local sub-cloud increases,

hereas the data read from remote sub-clouds decreases. That’s

ecause, during DHYDLO-Sync running, hot files are constantly syn-

hronized to the sub-clouds, which improves the sub-clouds’ data

ocality.
The effect of sub-cloud workload on input data read percentage

s shown as Fig. 12 . With the increase of sub-cloud workloads, the

ercentage of the input data read from local sub-cloud decrease,

hile the input data read from remote storages increases. That’s

ecause, with the workload’s inrease, there are few files can be

ynchronized to this sub-cloud, which reduces the data locality of

he sub-cloud.

(2) Node locality percentage

Fig. 13 shows us the node locality percentage of map tasks

nder the baseline algorithms and our proposed DHYDLO-Sync

lgorithm when process the Grep, TeraSort and WordCount Jobs.

s Fig. 13 shows, the DARE algorithm has the highest map

ask data locality. It is higher than our DHYDLO-Sync algorithm

hich has the similar data locality percentage with the Capac-

ty and the Fair algorithms. That’s because, the DARE algorithm is

146 C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149

Fig. 14. Average completion time of jobs.

6

d

p

c

a

c

f

u

b

m

c

i

p

fi

l

b

h

t

n

w

s

t

s

i

c

s

p

c

h

e

t

i

a

A

F

6

2

o

S

P

a

c

focus on the node locality optimization for map tasks, while our

DHYDLO-Sync algorithm aims at data locality optimization from

job level resolutions and pursues cloud-level data locality for

jobs.

(3) Jobs completion time

We perform each job for three times, and take the average

value as the job completion time. Fig. 14 shows the comple-

tion time of the Grep, TeraSort and WordCount jobs under the

baseline algorithms and our DHYDLO-Sync algorithm. As shown

as Fig. 14 , our DHYDLO-Sync algorithm has the least job com-

pletion time compare to the baseline algorithms. During process

the Grep job, the DHYDLO-Sync algorithm can save completion

time by up to 32.5% and 32.7% respectively compare with the

Capacity and the Fair algorithms, and about 16.4% time reduc-

tion compare with the DARE algorithm. When perform WordCount

job, they have similar performance trends as performing the Grep

job. Compare with the Capacity , the Fair and the DARE algorithms,

our DHYDLO-Sync algorithm can save about 30.5%, 30.7% and

15.4% job completion time respectively when process the TeraSort

job.

From Figs. 13 and 14 we can see, despite our DHYDLO-

Sync algorithm has not higher node locality percentage, it has

the optimum job completion time than the other baseline al-

gorithms. That’s because, in our DHYDLO-Sync algorithm, most

popular files have been synchronized to the sub-clouds of the

distributed hybrid cloud through file synchronization. When ex-

ecute, jobs can read part or all of the input data from local

sub-cloud’s HDFS, which can reduce job execution waiting de-

lay, thereby has the least average job completion time than other

algorithms.
. Conclusion

In this paper, to hide the latency caused by cross-cloud

ata transmission in remote file access, a scheduling-aware data

refetching scheme and a file synchronizing method for data lo-

ality in Hadoop-based hybrid cloud are proposed. In scheduling-

ware data prefetching algorithm, to enhance centralized hybrid

loud data locality and decrease job completion time, input data

or non-local map tasks are retrieved ahead of time by making

se of idle network bandwidth. Firstly, the nodes which have idle

andwidth are selected as the candidate compute nodes. Secondly,

ap tasks which have non-node locality relative to the candidate

ompute nodes are selected as the non-local map tasks. Finally,

nput data of non-local map tasks are prefetched to target com-

ute nodes in advance to reduce tasks execution waiting delay. In

le synchronizing scheme, to decrease job execution waiting de-

ay brought by cross-cloud data transmission in distributed hy-

rid cloud, considering from job level scheduling, data files with

igher popularity are synchronized beforehand among sub-clouds

o strengthen intra sub-cloud data locality. In order to avoid un-

ecessary data transmission, in each sub-cloud HDFS, the files only

hen their popularity is higher than the popularity threshold are

elected as the sync files. Then, according to predetermined rules,

he sync files from each sub-cloud are proactively sent to other

ub-clouds’ HDFS periodically. These two algorithms are evaluated

n Hadoop-based centralized hybrid cloud and distributed hybrid

loud respectively. Extensive experimental results show that the

cheduling-aware data prefetching algorithm outperforms the Ca-

acity , the Fair and the DARE algorithms in data locality and job

ompletion time. While for file synchronizing algorithm, despite

as not so high node-locality percentage, it has the shortest av-

rage job completion time compared to the baseline algorithms.

In the future, we will design more accurate prediction schemes

o speculate map tasks’ remaining execution time. In our schedul-

ng method, we consider data locality not only for map tasks but

lso for reduce tasks.

cknowledgments

The work was supported by the National Natural Science

oundation (NSF) under grants (No. 61672397, No. 61873341, No.

1771354), Application Foundation Frontier Project of WuHan (No.

018010401011290). Open Research Fund of Beijing Key Laboratory

f Big Data Technology for Food Safety, Open Research Fund of

haanxi Key Laboratory of Network Data Analysis and Intelligent

rocessing. Any opinions, findings, and conclusions are those of the

uthors and do not necessarily reflect the views of the above agen-

ies.

C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149 147

A ybrid cloud

uted hybrid cloud is shown as following two java files. In Appendix A.1

w we report on the algorithms for file synchronization.
ppendix A. File synchronizing for data locality in distributed h

The source code of file synchronizing for data locality in distrib

e report on the algorithms for file heat statistics. In Appendix A.2

A.1. File heat statistics

148 C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149
A.2. File synchronization algorithm

C. Li, J. Zhang and Y. Chen et al. / The Journal of Systems and Software 151 (2019) 133–149 149

R

A

A

A
A

C

C

C
C

C

C

D

F
G

I

J

J

K

K

L

L

L

L

L

M

M

M

M
M

P

S

S

T

V

W

W

W

W

Z

Z

L

S

i

S

a

Z

w

a

d

C

a

o

t

S

L

n

v

T
eferences

bad, C.L. , Lu, Y. , Campbell, R.H. , 2011. DARE: adaptive data replication for efficient

cluster scheduling. In: 2011 IEEE International Conference on Cluster Computing

(CLUSTER). IEEE, pp. 159–168 .
liyun ECS, https://www.alibabacloud.com/zh/product/ecs .

mazon EC2, http://aws.amazon.com/ec2/ .
nanthanarayanan, G. , Agarwal, S. , Kandula, S. , et al. , 2011. Scarlett: coping with

skewed content popularity in mapreduce clusters. In: Proceedings of the sixth
conference on Computer systems. ACM, pp. 287–300 .

ai, W. , Chen, M. , Leung, V.C.M. , 2014. Toward gaming as a service. IEEE Internet

Comput. 18 (3), 12–18 .
ai, W. , Leung, V.C.M. , 2012. Multiplayer cloud gaming system with cooperative

video sharing. In: 2012 IEEE 4th International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, pp. 640–645 .

apacity Scheduler. https://issues.apache.org/jira/browse/HADOOP-3445 .
hen, W. , Paik, I. , Li, Z. , 2016. Tology-aware optimal data placement algorithm for

network traffic optimization. IEEE Trans. Comput 65 (8), 2603–2617 .
hen, W. , Paik, I. , Li, Z. , et al. , 2017. A cost minimization data allocation algorithm

for dynamic datacenter resizing. J. Parallel Distrib. Comput .

lemente-Castelló, F.J. , Mayo, R. , Fernández, J.C. , 2017. Cost model and analysis of it-
erative mapreduce applications for hybrid cloud bursting. In: Proceedings of the

17th IEEE/ACM International Symposium on Cluster. Cloud and Grid Computing.
IEEE Press, pp. 858–864 .

i Costanzo, A. , De Assuncao, M.D. , Buyya, R. , 2009. Harnessing cloud technologies
for a virtualized distributed computing infrastructure. IEEE Internet Comput. 13

(5) .

air Scheduler. https://issues.apache.org/jira/browse/HADOOP-3746 .
uo, Y. , Zhao, J. , Cave, V. , et al. , 2010. SLAW: a scalable locality-aware adaptive

work-stealing scheduler. In: 2010 IEEE International Symposium on Parallel &
Distributed Processing (IPDPS). IEEE, pp. 1–12 .

sard, M. , Prabhakaran, V. , Currey, J. , et al. , 2009. Quincy: fair scheduling for dis-
tributed computing clusters. In: Proceedings of the ACM SIGOPS 22nd sympo-

sium on Operating systems principles. ACM, pp. 261–276 .

avadi, B. , Abawajy, J. , Buyya, R. , 2012. Failure-aware resource provisioning for hybrid
cloud infrastructure. J. Parallel Distrib. Comput. 72 (10), 1318–1331 .

in, J. , Luo, J. , Song, A. , et al. , 2011. Bar: an efficient data locality driven task schedul-
ing algorithm for cloud computing. In: 2011 11th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing (CCGrid). IEEE, pp. 295–304 .
avulya, S. , Tan, J. , Gandhi, R. , et al. , 2010. An analysis of traces from a production

mapreduce cluster. In: 2010 10th IEEE/ACM International Conference on Cluster,

Cloud and Grid Computing (CCGrid). IEEE, pp. 94–103 .
ovachev, D. , Cao, Y. , Klamma, R. , 2014. Building mobile multimedia services: a hy-

brid cloud computing approach. Multimed. Tool. Appl. 70 (2), 977–1005 .
iao, J. , Trahay, F. , Xiao, G. , et al. , 2017. Performing initiative data prefetching in dis-

tributed file systems for cloud computing. IEEE Trans. Cloud Comp. (3) 550–562 .
i, C. , Tang, J. , Hengliang, T. , Luo, Y. , 2019. Collaborative Cache Allocation and Task

Scheduling for Data-Intensive Applications in Edge Computing. Future Gener.

Comput. Syst. 95, 249–264 .
i, C. , Zhang, J. , Tao, M. , Tang, H. , Lei, Z. , Luo, Y. , 2019. Data Locality Optimization

Based on Data Migration and Hotspots Prediction in Geo-Distributed Cloud En-
vironment. Knowl. Based Syst. 165, 321–334 .

u, P. , et al. , 2015a. Distributed online hybrid cloud management for profit-driven
multimedia cloud computing. IEEE Trans. Multimed. 17 (8), 1297–1308 .

u, P. , Sun, Q. , Wu, K. , et al. , 2015b. Distributed online hybrid cloud management

for profit-driven multimedia cloud computing. IEEE Trans. Multimed. 17 (8),
1297–1308 .

alawski, M. , Figiela, K. , Nabrzyski, J. , 2013. Cost minimization for computational
applications on hybrid cloud infrastructures. Future Gen. Comp. Syst. 29 (7),

1786–1794 .
c
ansouri, N. , Javidi, M.M. , 2018. A new prefetching-aware data replication to de-

crease access latency in cloud environment. J. Syst. Softw .
arshall, P. , Keahey, K. , Freeman, T. , 2010. Elastic site: using clouds to elastically ex-

tend site resources. In: 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing (CCGrid). IEEE, pp. 43–52 .

icrosoft Azure, http://msdn.microsoft.com/windowsazure .
irantis OpenStack, https://launchpad.net/mos/5.1.x .

alanisamy, B. , Singh, A. , Liu, L. , et al. , 2011. Purlieus: locality-aware resource alloca-

tion for MapReduce in a cloud. In: Proceedings of 2011 International Conference
for High Performance Computing, Networking. Storage and Analysis. ACM, p. 58 .

araswathi, A.T. , Kalaashri, Y.R.A. , Padmavathi, S. , 2015. Dynamic resource allocation
scheme in cloud computing. Proced. Comp. Sci. 47, 30–36 .

eo, S. , Jang, I. , Woo, K. , et al. , 2009. HPMR: prefetching and pre-shuffling in shared
MapReduce computation environment. IEEE Int. Conf. Clust. Comp. Workshop.

IEEE 1–8 .

ang, S. , Lee, B.S. , He, B. , 2016. Fair resource allocation for data-intensive computing
in the cloud. IEEE Trans. Serv. Comput. 1–14 .

an den Bossche, R. , Vanmechelen, K. , Broeckhove, J. , 2013. Online cost-efficient
scheduling of deadline-constrained workloads on hybrid clouds. Fut. Gen. Comp.

Syst. 29 (4), 973–985 .
ang, W. , Ying, L. , 2016. Data locality in MapReduce: a network perspective. Per-

form. Evaluat. 96, 1–11 .

ang, W. , Zhu, K. , Ying, L. , et al. , 2016. Map task scheduling in mapreduce with data
locality: throughput and heavy-traffic optimality. IEEE/ACM Trans. Netw. 24 (1),

190–203 .
ang, W.J. , Chang, Y.S. , Lo, W.T. , et al. , 2013. Adaptive scheduling for parallel tasks

with QoS satisfaction for hybrid cloud environments. J. Supercomp. 66 (2),
783–811 .

u, D. , Xue, Z. , He, J. , 2014. iCloudAccess: cost-effective streaming of video games

from the cloud with low latency. IEEE Trans. Circuits Syst. Video Technol. 24 (8),
1405–1416 .

aharia, M. , Borthakur, D. , Sen Sarma, J. , et al. , 2010. Delay scheduling: a simple
technique for achieving locality and fairness in cluster scheduling. In: Proceed-

ings of the 5th European conference on Computer systems. ACM, pp. 265–278 .
hang, H. , et al. , 2014. Proactive workload management in hybrid cloud computing.

IEEE Trans. Netw. Serv. Manage. 11 (1), 90–100 .

i Chunlin is a Professor of Computer Science in Wuhan University of Technology.
he received the M.E. in Computer Science from Wuhan Transportation University

n 20 0 0, and Ph.D. in Computer Software and Theory from Huazhong University of
cience and Technology in 2003. Her research interests include cloud computing

nd distributed computing.

hang Jing received her BE degree in Computer Science and M.E. degree in Soft-

are Engineering from Xidian University in 2005 and 2008 respectively. She now is
 Ph.D. student in Wuhan University of Technology. Her research interests include

istributed computing, cloud computing and big data.

hen Yi received his Ph.D. degree in Beijing Institute of Technology. She is now

n Professor of school of computer and information engineering in Beijing Technol-
gy and Business University. Her research interests include Information Visualiza-

ion and Visual Analytics, Intelligent Data Processing, Big Data Technology for Food
afety, Data Mining and Machine Learning. She has published more than 90 papers.

uo Youlong He is a vice Professor of Management at Wuhan University of Tech-
ology. He received his M.S. in Telecommunication and System from Wuhan Uni-

ersity of Technology in 2003 and his Ph.D. in Finance from Wuhan University of
echnology in 2012. His research interests include cloud computing and electronic

ommerce.

http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0001
https://www.alibabacloud.com/zh/product/ecs
http://aws.amazon.com/ec2/
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0004
https://issues.apache.org/jira/browse/HADOOP-3445
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0008
https://issues.apache.org/jira/browse/HADOOP-3746
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0038
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0039
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0020
http://msdn.microsoft.com/windowsazure
https://launchpad.net/mos/5.1.x
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0028
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0029
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0030
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0031
http://refhub.elsevier.com/S0164-1212(19)30028-7/sbref0031

	Data prefetching and file synchronizing for performance optimization in Hadoop-based hybrid cloud
	1 Introduction
	2 Related work
	2.1 Data locality optimization methods in cloud
	2.2 Scheduling algorithms for data locality
	2.3 Hybrid cloud construction methods

	3 System model
	3.1 Scheduling-aware data prefetching for data locality in centralized hybrid cloud
	3.1.1 Remaining execution time estimation
	3.1.2 Compute nodes preselection
	3.1.3 Map task preselection
	3.1.4 Input data prefetching

	3.2 File synchronizing for data locality in distributed hybrid cloud
	3.2.1 Sync file preselection
	3.2.2 File synchronization among sub-clouds

	4 Application scenarios: online cloud gaming industry
	5 Experiments
	5.1 Experiment environment
	5.2 Evaluation metrics
	5.3 Hybrid cloud construction
	5.3.1 Centralized hybrid cloud establishment
	5.3.2 Distributed hybrid cloud establishment

	5.4 Experimental results analysis
	5.4.1 Performance analysis under centralized hybrid cloud
	5.4.2 Performance analysis under distributed hybrid cloud

	6 Conclusion
	Acknowledgments
	Appendix A File synchronizing for data locality in distributed hybrid cloud
	References

